
Growth of order in vector spin systems; scaling and universality

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 5897

(http://iopscience.iop.org/0305-4470/23/24/028)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 09:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/24
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen. 23 (1990) 5897-5913. Printed in the U K  

Growth of order in vector spin systems: scaling and 
universality 

A J Bray and K Humayun 
Department of Theoretical Physics, The University, Manchester MI3 9PL, UK 

Received 9 August 1990 

Abstract. The growth of order in vector spin systems with non-conserved order 
parameter (‘model A’) is considered following an instantaneous quench from infinite 
to zero temperature. The results of numerical simulations in spatial dimension d = 2 
and spin dimension 2 5 n 5 5 are presented. For n 2 4 ,  a scaling regime (where a 
characteristic length scale L ( t )  emerges) is entered for sufficiently long times, with 
L ( t )  N t112 .  Theautocorrelation function A ( t )  decays with timeas A ( t )  - t - ( d - - X ) / 2 ,  
and the exponent A(n) agrees well with the predictions of the l/n-expansion. The 
cases n = 2 and 3 are more complicated, due to the non-trivial role played by 
topological singularities, i.e. vortices (n = 2)  and Polyakov solitons (n = 3) .  For n 2 
4 ,  universal amplitudes and scaling functions characterizing the energy relaxation and 
the equal-time correlation function are identified. It is argued that for d 2 3, where 
an ordered phase exists at low temperature, such universal quantities characterize 
the entire ordered phase. 

1. Introduction 

Recent years have seen renewed interest in the ordering dynamics of a system quenched 
into the ordered phase from a high-temperature equilibrium state. For a conserved 
order parameter (model B in the classification of Hohenberg and Halperiri [l]) this 
process is phase separation by ‘spinodal decomposition’, while for a non-conserved 
order parameter (model A of [l]) it corresponds to an order-disorder transition (see 
e.g. [2]). In both cases there is evidence for a scaling regime at late times, where 
physical quantities depend on time only through the length scale L(1) which, for a 
scalar order parameter, describes the typical scale of the domains of ordered phase 
which have formed a t  time t .  

Much of the recent interest stems from the idea [3-51 tha t  the ordering is driven 
by a ‘T = 0 renormalisation group (RG) fixed point’ of the dynamics, since this would 
provide a natural framework in which to understand the scaling phenomena observed. 
Such an approach has been used [4,5] to determine the domain growth exponent cp 
( L ( t )  - t @ )  for a conserved order parameter, and to investigate the role of long-range 
correlations in the initial conditions [6]. Within the RG approach 4 = l / z ,  where z is 
the ‘dynamical exponent a t  the T = 0 fixed point’. For a conserved order parameter 
one obtains [4,5] 4 = 1/3 and 1/4 for scalar and vector order parameters respectively, 
the former in agreement with conventional Lifshitz-Slyosov scaling [7]. For a non- 
conserved order parameter, the RG provides no prediction: conventional arguments, 
however, give z = 2 for a scalar order parameter [8]. The  result for vector order 
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parameters is less clear-cut: z = 2 follows (essentially from dimensional analysis) if 
one assumes that L ( t )  is the only important length scale a t  late times [ 5 ] .  The role of 
possible topological singularities, however, which may provide additional length scales, 
has to  be carefully considered. 

In this paper we consider the ordering kinetics of n-dimensional spins ( n  2 a ) ,  
in spatial dimension d = 2 ,  for a non-conserved order parameter. This work extends 
the recent studies of d = 1 systems by Newman el a1 [9] which we will refer to  as I. 
In addition we discuss the possibility, raised in I ,  that  the amplitudes characterizing 
the decay of the excess energy a t  T = 0 and the growth of the ‘domain scale’ L ( t )  
are universal numbers. We present numerical evidence in favour of this hypothesis 
a t  T = 0. Finally we argue that ,  since a T = 0 RG fixed point controls the entire 
low-temperature phase, temperature-independent universal amplitudes and scaling 
functions can be defined which describe ordering at  all T < T, whenever T, > 0. 

The conventional scaling forms for the order parameter correlation function and 
its Fourier transform are [2 ]  

where the subscript ‘e’ indicates an equal-time correlation function. Correlations of the 
order parameter a t  two different times are also of interest, since it has been shown [lo] 
that these involve a new, non-trivial exponent. If S ( T , ~ )  is the order parameter field, 
we define C(T,  0 , t )  = (S(z,O).S(z + r , t ) ) ,  where the angle brackets indicate an 
average over both initial conditions and thermal noise (if present). General scaling 
considerations [ll] suggest 

where Ck(O, t )  is the Fourier transform of C(T,  0, l )  and 

X = d - X  

follows from dimensional analysis. Scaling forms can also be written down for general 
times t , t ‘ ,  but no new exponents are involved. 

By expanding about the exactly soluble n = CO limit, the forms (1)-(4) have been 
verified by explicit calculation to O( l /n )  for a non-conserved order parameter (model 
A) quenched to  zero temperature [lo], with the results L ( t )  - t ’ / 2  (i.e. z = 2 )  and 

X = d / 2  - ( 4 / 3 ) d / 2 ( 2 d ( d  + 2 ) / 9 ) B ( d / 2  + l , d / 2  + 1) ( l / n )  + O(l /n2)  ( 5 )  

where B ( z ,  y) = r(z)r(y)/r(z + y) is the beta function [ 1 2 ] ,  and r(z) is the gamma 
function [12]. Note that X is a non-trivial function of d and n. equation ( 5 )  shows 
that X is a non-trivial exponent even for d = 1. 

Numerical results for d = 1 and 2 5 n 5 5 have been presented in  I.  There it was 
found that d = 1 systems can be divided into two classes according to the value of n :  
for 71 2 3 the behaviour is qualitatively the same as for n = CO (e.g. 4 = 1 / 2 ) ,  whereas 
for n = 2 different behaviour is obtained, with d = 1/4.  For n 2 4 the results for 
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X are in good quantitative agreement with the l/n-expansion (5) truncated at  lowest 
non-trivial order. 

For d = 2, we find that only for n 2 4 is the behaviour qualitatively the same as 
for n = 00. The values obtained for X are again in reasonable quantitative agreement 
with (5) .  For n 5 3, the T = 0 relaxation is strongly affected by the existence of 
topological singularities, i.e. vortices for n = 2 and Polyakov solitons [13] for n = 3. 

The paper is organized as follows. Section 2 contains a short discussion of the 
dynamical model and the quantities calculated in the simulations. The results of are 
presented in section 3, along with a discussion of universality a t  T = 0. Universality 
a t  general T < T, is discussed in section 4. It is emphasized that ,  for general T, 
the scaling forms (1) and (2) require the T-dependent prefactor M 2 ,  where M is 
the equilibrium order parameter. This factor is important if systems a t  different 
temperatures are to  be compared on the same scaling plot. The paper concludes with 
a summary and discussion of the results. 

2. General considerations 

Following section 1, we work with spins of fixed length ( IS i \  = 1). The Hamiltonian 
is 

where the sum is over nearest-neighbour pairs and we have set the exchange interaction 
to  unity. With model A dynamics the rate of change of a spin is proportional to  the 
component of the local field (due to its neighbours) perpendicular to the spin. The 
equation of motion is therefore 

hi = CSj 
j 

where the sum in (8) is over the nearest neighbours of i. 

tion (6) becomes 
In the continuum limit, which is useful for a discussion of scaling properties, equa- 

H = 1.1 2 d d t ( V S ) 2  (9)  

ignoring higher-order spatial derivatives and dropping a constant equal to  the ground- 
state energy. For completeness, we also give the continuum limit of the equation of 
motion, derived in section 1: 

as/& = v2s + ( V S ) ?  s. (10) 

In equation ( lo) ,  we have taken the kinetic coefficient r to be unity. This corresponds 
to  a particular choice for the units of time. More generally, there would be a factor r 
on the right-hand side of (10). 
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At T = 0 equations (7) and (8), supplemented by an initial condition on the 
{ S i } ,  completely specifies the dynamics. In  the simulations we chose as an initial 
condition the state in which each spin is randomly oriented (over its hypersphere cf 
possible directions) independently of the others, i.e. the equilibrium state a t  infinite 
temperature. 

The central concept in the data analysis is the ‘domain’ scale L ( t ) ,  i.e. the length 
scale characterizing, via equation ( l ) ,  the spatial extent of the spin correlations a t  
time t .  Provided a scaling regime described by (1) and ( 2 )  exists, L ( t )  can be extracted 
rather directly from the data  by studying the decay of the excess energy A E ( t )  with 
time. From the continuum Hamiltonian ( lo) ,  the mean excess energy per unit volume 
(or per site in the lattice model) is 

1 1 
2 

A E ( t )  = -((VS)’) = - xk’ (S , ( t ) -S -k ( t ) )  

- 1 ddk k 2  L ( t ) d  g , ( k L ( i ) )  - L(t)-’. 

2 N  k 

This result requires that the sum over k be dominated by k of order L( t ) - ’ ,  i.e. that 
the integral converges a t  large k. such that the use of the scaling form (2) for the 
time-dependent structure factor is appropriate. It fails for a scalar order parameter, 
where the excess energy resides in domain walls of finite thickness U << L ( t ) .  For this 
case the excess energy is of order l / w  per unit area of wall, giving AE(t )  - l /wL(t)  
for the excess energy density, since the wall area in a volume L ( t ) d  is of order 15( t )~- ’ .  

A E ( t )  - l / t ,  
implying L ( t )  - t ’ / 2  in agreement with the large-n behaviour and with dimensional 
analysis based on L ( t )  being the only important scale [5]. With this choice of L ( t ) ,  
furthermore, the equal-time correlation function C ( r ,  t ,  t )  is found to scale precisely 
as predicted by (1). No such simple scaling, however, is observed for n = 2 or 3. 

The third quantity that we compute in the simulations is the ‘autocorrelation 
function’ A ( t )  = ( N - l  Ci S i ( t ) .  S i ( 0 ) ) ,  where N is the number of spins, i.e. A ( t )  = 
C(p,O,t). From ( 3 ) ,  we expect this to decay with time as A(t )  - L(t)-’, i.e. A ( i )  - 
t -A /2  for n 2 4 ,  where = 2 - X for d = 2. The data fulfil these expectations, and 
allow a fairly precise determination of X for n 2 4. 

From the d = 2 simulations discussed below we find, for n 2 4, 

3. Simulation results 

3.1. n 2 4 
Simulations were performed for d = 2 systems of N = 200 x 200 sites, wi th  periodic 
boundary conditions. At each site a spin of unit length is constrained to the surface 
of a hypersphere of dimension n. The system is set up with each spin having an inde- 
pendently random orientation, corresponding to an infinite-temperature equilibrium 
configuration. We now envisage an instantaneous quench to T = 0 where the non- 
equilibrium dynamics of the system are governed by equations (7) and (8). Since the 
system is a t  T = 0 there is no thermal noise. Results are averaged over an ensemble 
of 20 independently generated initial configurations. 

Simulation of the ordering process corresponds to iterating the finite difference 
version of (7) with time step At.  For the first 5000 iterations we set At = 0.01 
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For subsequent iterations we set At = 0.05 since by this time the spins will have a 
high degree of local correlation. We have checked that the results are insensitive to 
the choice of At.  An important point to note is tha t  converting (7) t o  a difference 
equation (i.e. finite At )  does not exactly preserve the length of a spin, although the 
error is only O(At)'. Thus, after each iteration. every spin is rescaled to unit length. 

During the  simulation we compute the following quantities. 
(i) The  excess energy per spin 

(ii) The  equal-time correlation function 

where here i + T indicates a site displaced by P lattice spacings, relative to site i, along 
a lattice axis. Displacements along both 2- and y-axes are included in the average. 

(iii) The  autocorrelation function 

In all cases (. . ,) indicates the avera.ge over the ensemble of initial configurations 

0 c ,' 0' __1 2 Ga 

111 

Figure 1. Relaxation of the excess energy per spin for. 7 ,  n = 4;  0,  n = 5 .  A fit 
to A E  = a (n ) / t  gives the amplitudes a(.) listed in table 1 

For n = 4 and 5 we find that the system enters a scaling regime, i.e. the equal- 
time correlation function scales as in ( l ) ,  after - 10 real time units. To determine the 
t-dependence of L(1) we plot AE(1) against l / t .  The  da ta  are presented i n  figure 1 
where, as elsewhere in this paper, the errors are smaller than the symbols. The  
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excellent linearity of the data  (times t 2 20 are shown), which extrapolate nicely 
through the origin, confirms the asymptotic time dependence A E ( t )  - l / t  and implies, 
via ( l l) ,  that L ( t )  - t 1 / 2  for n 2 4. Hence we can write, asymptotically 

The coefficients a(.) for n = 4 , 5  are listed in table 1. These values are of interest 
because we conjecture that they are universal, i.e. independent of the initial conditions, 
provided that any correlations present a t  t = 0 are short-ranged, and independent of 
the details of the Hamiltonian, provided the interactions remain short-ranged. Such 
universality can be explicitly demonstrated for n = CO, with ~(co) = d / 8 ,  as shown 
in I. Note that a necessary condition for universality is that the energy relaxes as l / t .  
This requirement follows upon demanding that A E ( t )  be invariant under a simple 
rescaling of the Hamiltonian. 

Table 1. The 
exponent X is deduced from the decay of the autocorrelation function, A ( t )  N t - ' I P ,  
using the data in figure 5; X E 2 - x for d = 2; A l l n  is the theoretical prediction (5) 
including the O(l/n) term; a(.) is the amplitude in the energy relaxation, A E  3 

a(n)/ t ,  extracted from figure 1; b(n) is the parameter describing the best Gaussian 
fit to the equal-time correlation function, C ( r , t ,  t )  11 exp{-b(n) r 2 / t } .  The final row 
gives the exact results for these quantities when n = 00. 

Exponents and amplitudes extracted from the data for n 2 4. 

4 1.11(1) 0.89(1) 0.901 0.374(1) 0.171(2) 
5 1.06(1) 0.94(1) 0.921 0.322(1) 0.148(2) 
0 3 1  1 1 114 1 18 

Data for the equal-time correlation function C(T,  t ,  t )  are presented in figures 2 and 
3, where the abscissa is in each case the scaling variable r/tl/'. The excellent collapse 
of the da t a  on to  universal scaling curves confirms both the scaling form (1) and the 
result L ( t )  - t ' / '  deduced from the energy relaxation. The scaling functions are close 
to  Gaussian, and fits to the form C ( r , t , t )  = exp(-b(n)r'/t) yield the parameters 
b(n) listed in table 1. Exact solution of the model for n = CO yields a Gaussian scaling 
function, with b(m) = 1/8 for all d [g]. The n = CO results for d = 2 are included i n  
table 1 for comparison. 

Results for the autocorrelation function, A ( t ) ,  are given in figure 4 for n = 4,5. 
The linear behaviour of the - lnA(t)  against l n t  plots confirms the anticipated result, 
namely 

with x = X(n). The  results for x and X z d - x are given in table 1, and compared 
with the prediction, equation (5) with d = 2, of the l/n-expansion. The agreement is 
surprisingly good. 

The errors quoted in table 1 are purely statistical, and take no account of any sys- 
tematic errors associated with a failure to  reac'l the asymptotic regime. The straight- 
ness of the lines in figures 1 and 4, however, and the excellent collapse of the data  
in the scaling plots of figures 2 and 3,  suggest that  the asymptotic regime is reached 
rather quickly for n 2 4 ,  since the data scales well for t 2 10. The systematic errors 
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Figure 2. The equal-time correlation function C ( T ,  t ,  t ) ,  plotted against the scaling 
variable r / t ' / 2 ,  for n = 4 : 0,  t = 2 O ; V ,  t = 40;W, t = 80;+ ,  t = 160. 

O o L - -  '7'5 
~ 

' ' '1'5' ' ' ' 2 ' ' ' 2 ' 5  ' ' f ' ' ' '3'5 ' ' i ' ' ' '4'5 ' ' 

T / t ' I 2  

Figure 3. Scaling plot of the equal-time correlation function for n = 5 .  Symbols as 
for figure 2.  

associated with the finite temporal extent of the simulations can be estimated from 
the exact solution, 011 the lattice, of equation (7 )  for n = 03 (see I). The  result sug- 
gests that  these systematic errors should be smaller than the statist,ical errors quoted 
in table 1. 

3.2. R. = 2 

The energy relaxation da ta  for n = 2 is shown in figure 5 .  In contrast to R 2 4 (and 
also n = 3,  see below) the excess energy does noL seem to relax to zero at infinite 
time, but rather to saturate at a non-zero limiting value. We ascribe this phenomenon 
to the presence of a finit.e density of vortices and anti-vortices, which are not relaxed 
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Wt) 
Figure 4. Time dependence of the autocorrelation function A ( t ) ,  plotted as - In A ( t )  
against h i t ,  for: V ,  n = 4;  0, n = 5. The values of the exponents 5 ( A ( t )  - t - ' / * ) ,  
deduced from the slopes, are listed in table 1 .  

out by the dynamics of equation (7) :  each spin is parallel to its local field and the 
vortex/anti-vortex state is a local (metastable) minimum of the Hamiltonian (6).  We 
have verified, by explicit inspection of the spin configurations, the presence of vortices 
and anti-vortices, with a typical separation of about 13 lattice spacings. The  vortex 
positions are stable under the dynamics. 

2 11 I c 

Figure 5 .  Relaxation of the exces energy per spin for n = 2. The choice for 1 / t1 l2  
as abscissa is motivated by the results obtained for d = 1 in [9]. Not,e that A E ( t )  
does not seem to be approaching zero as t - CO. 

In the absence of a well defined scaling regime for the energy relaxation a t  T = 0. 
one does not expect the correlation function to scale well. The  da ta  are presented 
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in figure 6, plotted against r / t ' / 4 .  Somewhat surprisingly, the collapse of the data 
is quite good apart from the earliest time, t = 20 (and, to  a lesser extent, t = 40). 
The choice of r/t1I4 as scaling variable is motivated by the results obtained in d = 1 
(see I), where ~ / t ' / ~  scaling was obtained analytically by linearizing the equation of 
motion in angular variables. This is valid when neighbouring spins are almost parallel, 
which is the case for d = 1 at  late times. The same calculation can be extended to 
d = 2 if one ignores vortices, and r / t ' / 4  scaling is again obtained [9]. It is not 
immediately clear how this result would be affected by the 'frozen' vortices present in 
the simulations. Furthermore, if vortices and antivortices are allowed to annihilate, 
either by introducing temperature or by using a 'soft-spin' Hamiltonian, quite different 
results might be obtained. 

I 
0 4 6 8 10 12 14 

T l t 1 1 4  

Figure 6 .  Scaling plot for the equal-time correlation function for n = 2 ,  using ~ / t ' / ~  
as scaling variable. n = 4 : 0,  t = 20; T .  t = 40;., t = S O ; + ,  t = 160. 

3.3. n = 3 

The case n = 3 is also difficult to  interpret. A preliminary log-log plot of excess 
energy against time suggests a t-'I3 decay law. Therefore we plot (figure 7) the 
excess energy directly against l / t 2 i 3 .  This plot yields, for t > 30, a good straight line 
that extrapolates through the origin, suggesting that there is no residual energy in 
this case and, from ( l l ) ,  that the characteristic scale grows as L ( t )  - t1 I3 .  However, 
an attempted collapse of the data for the equal-time correlation function using r / t 1 I 3  
as scaling variable is not convincing: the data are 'undercollapsed', suggesting that a 
scaling variable r / t @  with I$ > 113 is required. No value of 4, however, produces a 
good collapse over the whole range of the scaling variable. 

While we have been unable to account explicitly for the form of the data ,  it is 
possible that n = 3 is a special case, distinct from n 2 4, for the following reason. The 
continuum equation of motion (10) possesses stationary solutions (in which the right- 
hand side vanishes) other than the ground state. These are the soliton (or instanton) 
solutions identified by Polyakov [13]. While these seem to be weakly unstable on the 
lattice, the initial configuration may inject a number of such objects into the system. 
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I. I 

Figure 7. Relaxation of the excess energy per spin for n = 3, plotted against l / t 2 I 3 .  

The presence of these topological structures influences the dynamics in a way which 
we do not yet understand. As for the case n = 2, more work is required to  clarify the 
situation. 

After this work was completed, we received a preprint from Mondello and Gold- 
enfeld in which the case n = 2, d = 2 was studied using a ‘cell dynamics simu- 
lation’, equivalent to using a Langevin equation with a ‘soft-spin’ Hamiltonian, a t  
T = 0 [14]. This dynamics allows vortex-antivortex annihilation. The authors find a 
pre-asymptotic behaviour L( t )  - t31d, crossing over to  L ( t )  - t112 at  later times. This 
suggests that  asymptotically n = 2 belongs to  the same class of systems as n 2 4. It 
would be interesting to apply a similar approach to n = 3.  Our work strongly suggests 
that  fixed-length spin models yield the correct asymptotic behaviour for n 2 4. 

4. Universality 

For a scalar order parameter, it has been observed empirically that the scaling function 
for the equal-time correlation function C(r , t , t )  is universal if r is scaled by a suit- 
ably defined domain scale L ( t ) ,  extracted from the data itself (see e.g. [15] for recent 
studies of systems with a conserved scalar order parameter). Here we interpret this 
universality i n  terms of the T = 0 fixed point controlling the asymptotic dynamics, 
and suggest explicit forms for L ( t )  in terms of iiidependently measurable equilibrium 
properties of the system. We also note that equations (1) and (2) require a prefactor 
M Z  for general T .  

In the context of a non-conserved vector order parameter, the question of univer- 
sality in ordering kinetics was raised in I ,  where it was suggested that,  in addition 
to  C(r , t , t ) ,  the amplitude a(n) in the energy relaxation, A E  + a ( n ) / t ,  might be 
universal a t  T = 0. In subsection 4.1 we present numerical evidence for universality 
a t  T = 0. For this purpose we revert to  the d = 1 systems studied in I ,  and specialize 
to  n = 3.  The results should be qualitatively similar for all n 2 3 in d = 1 and for all 
n 2 4 in d = 2. In subsection 4.2 we suggest that an extended form of universality 
holds for T < T, when T, > 0. 
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4.1. Universa l i t y  a t  T = 0 

The simulation details of these d = 1 systems were described in I. The  basic idea 
underlying universality is tha t ,  on large length and time scales, the syst.em can be 
described by the continuum Hamiltonian (9) and corresponding equation of motion 
( l o ) ,  independent of the microscopic details of the model, with the proviso tha t  the 
the Hamiltonian contains only short-range interactions and the initial conditions only 
short-range correlations. These latter restrictions specify a universality class for the 
model. 

To test this idea we consider systems with both nearest-neighbour interactions 
J ,  and next-nearest-neighbour interactions J,. Then the continuum Hamiltonian be- 
comes H = ( p , / 2 )  f dd;c (VS)’ instead of (9), where the  spin-wave stiffness ps  is 
defined by AE(8)  = ( p S / 2 ) ( 8 / L ) ’ ,  this being the energy cost per spin of imposing a 
twist of 0 in the spin direction over a length L.  Since 8 / L  is the twist across each 
bond, we have 

ps  = J ,  $45,. 

The  corresponding equation of motion acquires a factor ps  on the right-hand side of 

In the simulations we used J ,  = 1 and J ,  = 0,  1/4, 3/4, and 7/4, corresponding 
to ps  = 1, 2, 4 and 8 respectively. If we assume that there a single characteristic 
length scale L ( t )  at late times, we can estimate its time dependence from dimensional 
analysis of (10) (with a factor ps  on the right-hand side), namely l / t  2: p s / L ( t ) ’ ,  to 
obtain L ( t )  z (pst)l/’. Similarly, equation (9) (with a factor ps on the right) gives, for 
the excess energy density, A E  N p,/L(t)* N l / t ,  independent of p s .  Thus  we expect 
to find, in the scaling regime 

(10). 

with both a and f,(z) universal. 
The  da ta  for A E  and C(T, t ,  t )  are shown i n  figures 8 and 9,  with the da ta  obtained 

with different values of p s  superimposed. The  results convincingly verify the forms 
(15) and (16). We conclude that the microscopic details of the model are indeed 
irrelevant in the scaling regime. 

The  above results also imply that the asymptotic behaviour of the system is inde- 
pendent of short-range correlations in the initial conditions. The  arguments leading 
to (15)  and (16) are equivalent t o  extracting the dependence on p s  by rescaling lengths 
through the change of variable z = p ; / ? z ’ .  Then p s  drops out of the equation of mo- 
tion in the continuum limit. However, ps reappears in the initial condition, since the 
length scale characterizing the range of the correlations is reduced by a factor pa’’ in 
the new variables. We conclude that the da ta  collapse of figures 8 and 9 demonstrate 
independence of the initial conditions a t  late times as well as of the microscopic de- 
tails of the model, subject to the caveat that any correlations in the initial conditions 
remain short-ranged. Initial conditions with long-range correlations can, however, be 
a relevant perturbation to the asymptotic dynamics [GI .  

As a link to the  following section we should emphasize tha t  the  forms (15) and ( l G )  
are predicated on particular values for the ‘kinetic coefficient’, r = 1 ,  and the spin 
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1 2 4 :  2 5 :  

t 

Figure 8. Relaxation of the excess energy per spin for d = 1 ,  n = 3, plotted as 
t A E ( t )  against t .  The data from systems with p3 = 1 , 2 , 4 , 8  are superimposed, as 
described in the text. The limit as t i CO gives, via equation (15), the universal 
energy amplitude R for these systems, and is consistent with the value a = 0.193(1) 
obtained in [9]. The ‘flatness’ of the data is an indication of how early the scaling 
regime sets in. 

Y l ( P S ) 1 ’ 2  

Figure 9.  Universal scaling function fe(z) (equation (16)) for d = 1, n = 3. The 
data for p6 = 1 , 2 , 4 , 8  are superimposed. 

length, IS1 = 1 (or equivalently the equilibrium order parameter, M = 1). In sec- 
tion 4.2 below we will include the effects of thermal fluctuations on these quantities 
to obtain generalized scaling forms for all T < T,. To conclude this section we discuss 
what (15) and (16) become at T = 0 for general kinetic coefficient I’ and spin length 
IS1 = M .  

In the  most general case the continuum Hamiltonian and equation of mot,ion be- 
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come, instead of (9) and ( lo ) ,  

H = A 2M2 /dd2:(VS)2 

aS/at = (I 'p , /M')  {V'S + M-' (VS)2 S}. 

Repeating, in this more general context, the dimensional analysis that  previously led 
to  ~ ( t )  N ( p s t ) ' I 2  now gives 

Similarly, dimensional analysis of (17) yields now 

Then the general statement of universality a t  T = 0 is 

M 2  A E ( t )  = a E 

with a and f , ( z )  universal for a given n and d. We stress again that r ,  ,os and M 
are simply constants in (21) and (22). In the following subsection they will become 
functions of temperature. 

4.2. Unzversalaty for  T < T, 

Given that the ordering kinetics is governed by a T = 0 RG fixed point, it seems 
reasonable to  assume that any universal quantities in the theory are properties of 
the fixed point itself. Furthermore, since the fixed point is attractive, these same 
universal quantities should characterize the entire ordered phase. Our viewpoint in this 
subsection is that this is indeed the case, and that the role of thermal fluctuations is 
limited to  renormalizing the kinetic coefficient r ,  spin wave stiffness ps and equilibrium 
order parameter M ,  so that these become functions of temperature given by their 
equilibrium values. 

The validity of this result rests on there being no non-trivial renornializat ion of 
r at  the T = 0 fixed point [5]. For a vector order parameter, this assumption leads 
immediately to  z = 2 (i.e. L ( t )  - t ' / 2 ) ,  and is equivalent to  the assumption that the 
dimensional analysis which we performed above gives correct results [5]. TI 11s ' means 
that the discussion is limited to  12-values for wliicli L ( t )  - t1I2  and A E ( t )  - l / t ,  i.e. 
to  the 'large-n' classes n 2 3 for d = 1 and n 2 4 for d = 2,  and possibly also to n = 2 
for d = 2 [14]. 

One minor modification for T > 0 is t h a t  the excess energy has to be replaced 
by the excess free energy i n  ( 2 1 ) .  Thus we conjecture that ,  throughout the ordered 
phase, the asymptotic time-dependence of the excess free energy is given by 

A F ( t )  = a M2/rt (23)  
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and tha t  of the equal-time correlation function is given by (22),  where now A4 = M ( T ) ,  
I‘ = r (T)  and p s  = p,(T) are the equilibrium values of these quantities in the ordered 
phase, and may be obtained from macroscopic measurements. For example, p s ( T )  
and r (T)  can be  deduced from the dependence on wavevector k and frequency w of 
the equilibrium transverse susceptibility x T ( k l w )  in the limit k -+ 0, w -+ 0,  namely 
xT(k ,0)  -+ M 2 / p , k 2 ,  and xT(O,w) + r / ( - i w ) .  The  key point is tha t  a and f,(z) 
should be universal and independent of T .  

For general T ,  equations (22) and (23) hold only when L ( t )  and r are both large 
compared to the thermal correlation length <. In the limit T + T, from below, one 
can insert the scaling behaviour 1M2 - < - ( d - 2 t q ) ,  ps - < - ( d - 2 )  and r - tZ-q-’, where 
z is here the dynamic critical exponent, to obtain AF(1) - < - d ( < z / t ) ,  consistent with 
static and dynamic critical scaling, and C ( r ,  t ,  t )  = < - ( d - 2 + q )  f[(r/<)(<Z/t)’/2],  again 
consistent with critical scaling. 

The  extension of these arguments to a conserved vector order parameter, and to 
conserved and non-conserved scalar order parameters, is discussed below. 

5. Discussion and summary 

The  T = 0 ordering kinetics of vector spin systems with non-conserved order parameter 
have been discussed. Numerical simulations in d = 2 for 2 5 n 5 5 indicate the 
existence of an asymptotic scaling regime, with characteristic length scale L ( t )  - t l I Z ,  
for n 2 4 .  The scaling regime is associated with a l /t  behaviour of the excess energy, 
and with the scaling form (1) for the equal-time correlation function. The  correlation 
with the initial condition is described by the power-law form (13),  and the exponent x is in reasonable agreement with the prediction of the l/n-expansion [lo]. 

For n = 2 the T = 0,  fixed-length spin, Langevin dynamics employed seem to  lead 
to metastable states, with non-zero vortex density a t  infinite time. Thus  we do not 
believe tha t  the asymptotic scaling regime is accessible by these methods, although 
the equal-time correlation function scales reasonably well against r/t114 for the times 
studied. I t  is interesting tha t  L ( t )  - t114 is the result expected in the absence of 
vortices, and is i n  fact realized for d = 1. The  r/t114 scaling obtained for d = 2 will 
presumably break down when L ( t )  becomes comparable with the typical spacing of 
the frozen vortices. Recent studies using a ‘cell dynamics simulation’ (CDS), equivalent 
to a ‘soft-spin1 Hamiltonian, are consistent with L ( t )  - t ’ 1 2  a t  late times [14]. 

Similarly, for n = 3 the da ta  fail to scale well, even a t  short times, due presumably 
to the presence in the system of ‘Polyakov solitons’ [13]. It  will be interesting to  apply 
the CDS approach to this case. 

For vector systems with 0, = 1/2,  we have argued tha t  the scaling function for 
the equal-time correlation function should be universal, i.e. independent of T as well 
as of microscopic details of the model, for all T < T,, provided the scale length L ( t )  
is expressed in terms of the appropriate macroscopic quantities M ,  r and ps as i n  
(22). Similarly, we argue that the excess free energy should be associated with a 
universal amplitude, as in (23) .  This universal behaviour should, we believe, emerge 
as a property of the T = 0 fixed point controlling the scaling regime. Universality 
with respect to the Hamiltonian has been demonstrated explicitly a t  T = 0 for d = 1, 
n = 3. 

We conclude by discussing how such universality might emerge for a scalar order 
parameter (i.e. n = 1). For a non-conserved scalar order parameter, the analogue of 
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(19) is [5] 

where C and w are the surface tension and domain wall thickness respectively. The  
explicit appearance of the latter is a consequence of the non-trivial renormalization 
of the kinetic coefficient at the T = 0 fixed point for this case [5]. Also, the excess 
free energy density has the form AF( t )  N C / L ( t )  for a scalar order parameter, so the 
analogues of (23) and (22) are given naively by 

I t  is tempting to conjecture tha t  a and fe(z)  are here universal, as was suggested 
for the non-conserved vector case. This, however, requires us to provide a precise 
definition of the ‘interface thickness’ w. In addition, it is not immediately clear what 
is meant by E, in (25) and (26) ,  for lattice models where the surface tension can 
be anisotropic. By contrast, for lattice vector models the isotropy of the spin-wave 
stiffness ps follows from the existence of the isotropic continuum limit (17). Setting 
these caveats aside, it will be interesting to  carry out simulations of scalar systems 
for a range of temperatures below T, to test whether, for example, the equal-time 
correlation function can be fitted to the form C ( r , t , t )  = M2fe ( r /B t ’ l2 ) ,  where all the 
T-dependence is contained in M and B ,  as suggested by (26). 

In a similar spirit, one can consider a conserved scalar order parameter. For this 
case, one expects [ 4 . 5 , 1 6 ]  

where X is the ‘transport coefficient’ or ‘spin conductivity’ [4 ,5 ,  161. This gives, instead 
of (25) and (26), 

(28)  

Finally, for a conserved vector order parameter, one expects [4 ,5]  

114 
L ( t )  N (S) 

giving 
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An additional caveat in this case is that,  for a conserved vector order parameter with 
n = CO, the scaling form (1) is known to fail due to  the appearance of two marginally 
different length scales diverging as t’I4 and ( t /  lnt)’/4,  leading to  ‘multiscaling’ instead 
of simple scaling [17]. It is not known at  present whether this phenomenon persists 
to finite n. Multiscaling has also been suggested in the context of a non-conserved 
scalar order parameter [18], although there is no evidence in this case for the failure 
of the scaling from (1) for the equal-time correlation function. The excellent scaling 
of the data  presented in figures 2 and 3 also strongly suggests the validity of (1) for a 
non-conserved vector order parameter, a t  least for n 2 4. 

The prefactor M 2  in (22), ( 2 6 ) ,  (29) and (32) is important, and seems to  have 
been overlooked in some previous analyses. Rogers et a1 [15], for example, study the 
Langevin equation for a conserved scalar ‘soft-spin’ model in d = 2 with dimensionless 
thermal noise = 0,  0.05, 0.2 and 0.5. The data for E = 0.5 do not fall on the same 
scaling curve as the other data ,  which they attribute to  the E = 0.5 data  not being i n  
the scaling regime. A visual inspection of the data,  however, reveals that the E = 0.5 
data is essentially just reduced by an overall factor of about 0.75 compared to the 
scaling curve. We interpret this, via equation (29) ,  as corresponding to  an equilibrium 
magnetization M of about 0.87 for this noise strength. In the study by Gunton e t  
a1 [15], data  from the d = 2 kinetic Ising model a t  T = 0.6Tc collapse well onto 
data  obtained from Langevin and CDS studies a t  T = 0. For T = 0.6Tc, however, the 
equilibrium magnetization is extremely close to unity, so the omission of the factor 
M 2  in (29) would not be noticed. 

The origin of the factor M 2  is clear when one recalls that the scaling regime is 
defined by r and L ( t )  both being large compared with the thermal correlation length 
[, but r / L ( t )  arbitrary. For << r << L ( t )  one has immediately C ( v , t , t )  = M 2 ,  which 
also shows that fe(0) = 1. 
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